Multiple Network Alignment on Quantum Computers
نویسندگان
چکیده
Comparative analyses of graph structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given k graphs as input, alignment algorithms use topological information to assign a similarity score to each k-tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs, and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method, and show that it can deliver exponential speedups over conventional (non-quantum) methods.
منابع مشابه
News Feature: Code wars
In October 2014, an Antares rocket blasted off from a NASA launch pad on one of Virginia’s barrier islands, and exploded seconds later. In addition to about 5,000 pounds of food and equipment destined for the International Space Station, the doomed rocket was carrying 26 miniature satellites called CubeSats, one of which housed physicist Alexander Ling’s experiment. “We thought, ‘oh, that’s it,...
متن کاملParallel Sequence Alignment in Limited Space
Sequence comparison with affine gap costs is a problem that is readily parallelizable on simple single-instruction, multiple-data stream (SIMD) parallel processors using only constant space per processing element. Unfortunately, the twin problem of sequence alignment, finding the optimal character-by-character correspondence between two sequences, is more complicated. While the innovative O(n2)...
متن کاملParallel Sequence Alignment in Limited
Sequence comparison with aane gap costs is a problem that is readily parallelizable on simple single-instruction, multiple-data stream (SIMD) parallel processors using only constant space per processing element. Unfortunately, the twin problem of sequence alignment, nding the optimal character-by-character correspondence between two sequences, is more complicated. While the innovative O(n 2)-ti...
متن کاملGeneral Quantum Computational Networks Using Nonlinear Operators
What is presented is an outline of a new type of system which approximates a desired wavefunction given an input using qubits. If enough of the nodes activate then corresponding output is generated. This formulation can be extended to the same network enticing multiple people by the use of segregation of certain nodes to reach an activiation threshold. What this paper shows is that there are al...
متن کاملSpacetime Foam, Holographic Principle, and Black Hole Quantum Computers
Spacetime foam, also known as quantum foam, has its origin in quantum fluctuations of spacetime. Arguably it is the source of the holographic principle, which severely limits how densely information can be packed in space. Its physics is also intimately linked to that of black holes and computation. In particular, the same underlying physics is shown to govern the computational power of black h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information Processing
دوره 13 شماره
صفحات -
تاریخ انتشار 2014